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A detailed study of the Bianchi type IX cosmological model is done. Classical 
field equations are discussed with a massive scalar field. The Wheeler-DeWitt 
quantum equation is formed and is solved using a Born-Oppenheimer type of 
approximation. 

1. I N T R O D U C T I O N  

So far, isotropic cosmological models have been studied extensively 
from both classical and quantum standpoints. But is little work on 
anisotropic models, especially on the Bianchi-IX closed cosmological 
model,  due to the complicated nature of  the field equations. Actually, the 
study of  anisotropic models was started after the discovery of the microwave 
background radiation in 1965. It was found that the radiation was isotropic 
to one part  in 104 apart  f rom a dipole anisotropy which was attributed to 
the peculiar motion of our galaxy (Hawking and Luttrell, 1984). 

In this paper  the Bianchi-IX cosmological model is studied in detail. 
The classical field equations are studied for different choices of  the variables 
and the metric on superspace is interpreted physically and also the geodesics 
on superspace are calculated in Section 2. In Section 3, the Wheeler-DeWit t  
equation for Einstein-Hilbert  action is simplified to a diagonal form by a 
suitable t ransformation of  the minisuperspace variables and is solved with 
a Born-Oppenhe imer  type of approximation.  A brief  conclusion and future 
prospects are given in Section 4. 
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2. BIANCHI-IX C O S M O L O G I C A L  M O D E L  WITH 
A MASSIVE SCALAR FIELD 

A Bianchi-IX model has a homogeneous anisotropic closed metric 
(Hawking and Luttrell, 1984) 

dS 2 = - N 2 ( t )  dt2 + e2a(t)[ e2~]otoi . to j (2.1) 

where/3~ ) is a 3 x 3 symmetric trace-free matrix and to i are three one-forms 
on the three-sphere which obey 

do) i = eUktO J A 03 k 

A typical explicit form of  the metric is (Martens and Nel, 1978; Banerjee 
and Santos, 1984) 

dS 2 = _N2( t )  dt2+ a2(t) dx2+ b2(t) @2+ (b 2 sin 2 y + a 2 cos 2 y) dz 2 

- 2 a  2 cos y dx dz (2.2) 

Here an overall prefactor is neglected and a constant factor equal to the 
three-volume is omitted, as they are irrelevant in classical analysis. We have 
taken a minimally coupled free homogeneous scalar field &(t) of mass m. 
The action of  the system is 

S = f  L . d t  

where 

N (  1 a 3 ab 2 2d.[~.b qb:) 
L=-~ a--~ b2 S2 N2 ab2m2&2+ab2--~ (2.3) 

Now variation of S with respect to the lapse function gives the constraint 
equation 

2 ti /~ 1 62 1 1 a 2 q~2 rnZ4 '2= 
U 2 a b ~-N-~ b Z'~ b 2 4 b 4 N 2 0 (2.4) 

We now parametrize the time scale so that N( t )=  1, which will be taken 
henceforth. The field equations are (Banerjee et al., 1990) (obtained by 
variation of  a, b, and th) 

ti /~" d/~ 1 a 2 
- + - + -  
a b a b + 4  0 (2.5) 

/~" /~2 1 3 a 2 
2 -~+-~-~ b2 4 b 4 ~- ~02- rn2(92 = 0 (2.6) 

~ + ( - -d+2/~  q~ + m2~b = 0 (2.7) 
\a  b/ 
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If we introduce 

a = ln  a, /3 = ln  b 

then the field equations (2.4)-(2.7) are simplified to 

2&/3 +/~2+ e-2~ _~ e2~-4~ _ ~2_  m2q~2 = 0 

d +/~'+ &2+/~2+ &/~ +�88 e2~-4t3 + ~ 2 -  rn2&2 = 0 

2]~ +3/~2 + e-2t3 _3  e2~-4/3 ,..~ ~)2 m2~2 = 0 

~ + ( a  + 2 / 3 ) ~ +  m2~b = 0  

(2.8) 

(2.9) 

(2.1o) 

(2.11) 

The dimensionless variables (Page, 1987; Hawking and Page, 1988) 

x---= ~b, y = m-l~ ,  z = m-]&, u = m-1/3, 

v = a - f l ,  ~ = mt 

(2.12) 

change the above second-order equations to a set of coupled first-order 
equations: 

dx 
- - = y  (2.13) 
d~7 

ay 
- - =  - x - y ( z + 2 u )  (2.14) 
d~7 

d ! = l + k / 4 x 2  1 2 . k / 2 - 1  u 2 _ z 2  1 - 3 / 4 k  
d~7 ~ - 1  y • l ~ zu (2.15) 

du k x 2  l - k ~ 2  2 l u 2  1 - 3 / 4 k  
d~ - 411 1 Y - 7  ~ ~ zu (2.16) 

dv 
- - =  z -  u (2.17) 
d~ 

with k = e 2v, I = 1 - k /4 .  The first integral of the above set of first-order 
equations, i.e., the constraint equation, takes the form 

l 
m262 = x2 + y 2 -  2zu - u 2 (2.18) 

Thus, the solutions represent four-parameter congruence of trajectories in 
the five-dimensional (x, y, z, u, v) space. 
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We may further study the field equations in the three-dimensional 
minisuperspace parametrized by the coordinates (a, b, th). They are nothing 
but the timelike geodesics in the three-dimensional auxiliary metric (Fang 
and Ruffini, 1987) 

ds 2 = M 2 (  dr2 + dc~ 2 - d3 2) (2.19) 

where 

with 

M 2 = m2(b 2 e2(~+9~) + 1 e4(Z,+a) _ e2(~ ,+5~) (2.20) 

where 
e = m2~b 2 e 2(v+9a) + 1  e4(3,+6) _ e2(V+sa) 

f =  9m2052 e 2(v+9~) + e 4(~'+a) -- 5 e 2(v+s~) 

g = m2O~ e 2(y+9~) 

For a massless scalar field, combining (2.21a) and (2.21b), we have that the 
equation for geodesics reduces to 

{tz+dy'~ d2c~ d~b d2y 
d62 d6 d62 

with 

e 

/1" = f  m=o 

Thus, the auxiliary metric (2.18) and the geodesics (2.21a)-(2.2.1b) are 
singular corresponding to the points M 2 = 0, but the trajectories simply pass 
through these curves in the configuration space without any singularity in 
the physical metric (2.2) (Page, 1984). 

(2.22) 

~, = ~ - ~ / 4 ,  a = ~ / 4  

Because the auxiliary metric (2.19) is conformally flat, the trajectories 
may also be interpreted as those of a particle (Page, 1984) of variable 
mass squared M 2 moving in the flat three-dimensional Minkowski metric 
- d 8 2 +  d T 2 +  do5 2. 

The geodesic equations for the auxiliary metric (2.19) may be written 
as a set of two second-order equations (Page, 1984) (eliminating the affine 
parameter): 

d2y+ 2 M 2  [1 - \-~](dY]2 - k-d-{)/(dq~) 21.] (e  + f d ~ )  = 0 (2.21 a) 

d2q~d62 1-1--~-M2 [I -\-~](dy~2 -\d6,1 (&b'~ 2].] (g+f-~6)=0 (2.21b) 
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3. WHEELER-DEWIT]" EQUATION AND ITS SOLUTION 

Let us now return to the Lagrangian (2.3); the corresponding canonical 
momenta are 

Pa = -b(~, Pb = --(a(~ + ba), p~ = ab24, 

So the Hamiltonian in terms of canonically conjugate variables (a, pa), 
(b, pb), and (4,,p~) is 

H = l ( a  2 1 1 2 l a3 ) 
2 - - ~ P a - - - b P a ' P b + - ~ [ ~ - - a + - 4 - ~  +m24,2ab2 (3.1) 

Hence, replacing the momenta by the corresponding operators the Wheeler- 
DeWitt equation is (Fang and Ruffini, 1987) 

H . r  
So with a particular choice of operator ordering, the explicit form will be 

02~0 a 2 02~b 02~ a2b2t~+ a4" ~+ m24,2a2b4~b =0 (3.2) 
2 a b ~ - ~ -  Oa 2 04, 2 4 

By the change of variables 

a = In a, /3 = ln(a. b) (3.3) 

we can diagonalize the D'Alembertian and the resulting equation is 

02~t 021]/ ~2~ e4C~ 
0/3 2 0 a  2 0(92 ezra" ~+---d-" th+rn24,2" e2(2z-")O=0 (3.4) 

This is a second-order hyperbolic equation in the three-dimensional 
(a,/3, 4,) space. 

We shall now solve this partial differential equation with some approxi- 
mation. The separation-of-variables method will not be applicable because 
of the term containing mass of the scalar field. So we use a Born-Oppen- 
heimer (Kiefer, 1987, 1988; Hartle, 1987; Brout et aL, 1987) type approxima- 
tion where adiabatic expansion of the wave function is done. Accordingly, 
we use the ansatz (Kiefer, 1987, 1988) 

6(~,/3, 6) =Z c.(~, /3)~.  (c~,/3, 4,) (3.5) 
n 

qb,(a,/3, 4,) are the oscillatory eigenfunctions of the eigenvalue equation 
for the harmonic oscillator in 4, (assuming qb depends adiabatically 
on a,/3) 

02 4cz 
---O'-~ + W2( a, /3 )4, 2-- e2~ + ff-'-4-] dign( O~, /3, 4, ) 

= E,(a,/3)qb,(a,/3, 4,) (3.6) 
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The explicit forms of the frequency, energy eigenvalues, and eigenfunctions 
are 

r a, 13 ) = rn e 2t3-~' 

E.(a ,  13) = (2n + 1)m e 2t3-" - e 2~ + e4"/4 

O.(,~, 13, 4') = (2".  n!) 1/2 H.(4'[~o(,~,/3)] 1/2) e -t'~ 

Substituting (3.5) into (3.4), we obtain 

+E c ( 2,o o2, 
. \  o132 oc2 }=o 

Taking the scalar product with ~bl and using the orthonormal property of 
the eigenfunctions {q).} and equation (3.6), one gets 

002 § E~(oq13) Ct(oq13)=O (3.7) 

where the coupled terms are neglected, according to this method. Taking 
~ as the adiabatic parameter, a similar expansion for C~(c~, 13) is 

G ( ~ ,  13) = E  u~')(o~)v~(,~, 13) (3.8) 
k 

Here V~kl)(a, 13) satisfies the differential equation 

02 v k 
0132 t- e2t3A(a)Vk = K2Vk 

(the superscript is omitted) with 

A ( a ) = ( 2 n + l ) m  e - ~ - 1  

Hence, the solution for Vk is 

Vk(O~,13)=Jk(et~[A(a)] 1/2) or Ik(e~lA(o~)[ 1/2) 

according as A ( ~ ) >  or <0.  Similarly, one has Uk=Kk/2(e2'~/4), the 
modified Bessel function. So the general solution is 

ijj(O/, 13, 4,) = ~n ~..k I.W (~" 13) ] 1/4 1 (2 n" n [)1/2 Hn(4'[~176 13)]1/2) 

X e-~'~162 (3.9) 

where Bk is the Bessel or modified Bessel function of order k and H. is 
the Hermite polynomial of  degree n. 
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Moreover, if the scalar field is assumed to be massless, then equation 
(3.4) simplifies to 

320 320 024, e2%+e4~4,=0~_ 
(3.10) 

0/3 2 0C~ "2 049 2 

where a separation ansatz is applicable. So we write 

0(a,/3, 49) = p ( a )  �9 Q(/3) �9 R(49) (3.11) 

The differential equations for p(a) ,  Q(/3), and R(49) are 

d2p e4~p 
da 2 4 P 2 p = 0  

d249 eZ~Q_ qZQ = 0 
d/3 2 

d2R 
- - -  r Z R  = 0 
d49 2 

(p, q, r are arbitrary constants). Hence, the explicit form of ~ is 

tp( a, /3, 49) = Kv/2( e2'~ / 4) Kq( e t3) exp(-r49) 

Hence, ~-~ 0 for large volume, i.e., the wave function remains finite even 
if the universe expands infinitely. 

4. CONCLUSION 

The correct behavior of the wave function (exponential or oscillatory 
in form) in the classically forbidden region or classically allowed region is 
obtained from the solution (4.9) due to the asymptotic behavior of the 
modified Bessel function or Bessel function. Thus, a massive scalar field 
model in the Bianchi-IX ansatz may predict correct behavior in both regions. 
But the solutions for a massless scalar field predict only the classically 
forbidden region, as the asymptotic behavior is only exponential in form. 
So the massive scalar field model is physically more interesting than the 
massless scalar field. 

It is interesting to determine the wave function using the proposal of 
Hartle and Hawking (1983) with the recently developed concept of micro- 
superspace (Halliwell and Louko, 1988a, b; Hartle, 1989) and compare it 
with the above wave function, derived from the Wheeler-DeWitt equation. 
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